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Relativistic scattering in a slowly varying external field 

Leonard Rosenberg 
Department of Physics, New York University, New York, NY 10003, USA 

Received 17 September 1981 

Abstract. A low-frequency approximation for the scattering of a spinless charged particle 
by a spinless neutral target in the presence of an external electromagnetic field, originally 
derived for the case of a monochromatic plane wave of infinite extent, is generalised so that 
it applies to the more realistic case of a wave train of finite length. The case where the 
charged particle has spin $and an anomalous magnetic moment is also treated. The field is 
taken to be slowly varying relative to the collision time, but the spectral composition of the 
field is otherwise arbitrary; the static limit, corresponding to a constant crossed field, is 
included as a special case. The assumption that the collision is essentially instantaneous is 
formulated in a gauge-invariant manner, and this provides the physical basis of the 
derivation. As in earlier versions of the low-frequency approximation, the approximate 
transition amplitude is expressed in terms of the on-shell amplitude for scattering in the 
absence of the field. 

1. Introduction 

In the course of an analysis of the connection between low-frequency approximations 
and the classical limit, Brown and Goble (1968) derived an approximation for the cross 
section for scattering of a charged scalar particle in the presence of a monochromatic 
external radiation field which is correct to all powers of the electric charge and which 
correctly provides the first two terms in the expansion of the exact cross section in 
powers of the frequency of the field. Non-relativistic versions of the Brown-Goble 
approximation have been developed subsequently within the context of potential 
scattering models (Kroll and Watson 1973, Mittleman 1980, Rosenberg 1981), and 
experimental investigations of electron-atom scattering in a laser field have been 
undertaken (Weingartshofer et a1 1979). In view of the continuing interest in the 
problem of scattering in a laser field, we have thought it worthwhile to return to the 
relativistic model of the scattering adopted by Brown and Goble in order to gainiurther 
insight into the nature and domain of validity of the low-frequency approximation. 

Closed-form solutions for the charged-particle motion in the field can be obtained 
for a plane-wave field of arbitrary spectral composition (Volkov 1935). As shown 
explicitly by Neville and Rohrlich (1971), wave packets can be constructed from linear 
superpositions of Volkov solutions. These packets serve as the appropriate asymptotic 
states in a description of the scattering process. The centre of the packet follows a 
classically determined trajectory and, for a wave train of finite length, spends only a 
finite amount of time in the region where the field is non-vanishing. These solutions 
have been adopted in the present work. Using gauge invariance as a guide, and 
requiring that the field be sufficiently slowly varying (a condition stated more precisely 
below), we have derived a generalised version of the low-frequency approximation. 
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Several earlier versions, both relativistic and non-relativistic, appropriate to scattering 
in a monochromatic field, are contained in the present result as special cases. One such 
case is the external-field version of the theorem derived by Low (1958) for spontaneous 
single-photon bremsstrahlung, obtained here by passing to the weak-field limit. The 
static limit, corresponding to a constant crossed field, is another special case of interest. 
It should be noted that the static limit is not obtained from the amplitude for scattering 
in a monochromatic field by allowing the frequency to approach zero. That limit is 
singular since the vector potential is unbounded in a zero-frequency field of infinite 
extent. In the present formalism, on the other hand, the wave train is of finite length and 
the static limit is well defined. 

We first study the model adopted by Brown and Goble which involves the elastic 
scattering of two spinless particles, one charged and one neutral. We then treat the case 
where the charged particle has spin f and anomalous moment pA. Analogous results 
could be obtained for other scattering systems. In particular, the electron-atom system, 
described by the non-relativistic Schrodinger equation, can be analysed along very 
similar lines with the aid of the gauge transformation technique described previously 
(Rosenberg 1981). 

2. Formulation of the scattering problem 

We consider here the elastic scattering of two spinless particles, one of charge e and 
mass m, the other neutral and of mass M. In the absence of the external field, and in the 
limit where the asymptotic solutions are plane waves exp(ip ax) of infinite extent 
(p a x  = p  * x  -poxo), the invariant amplitude for the transition changing the charged- 
particle momentum from p to p f  while the target has its momentum changed from q to q’ 
can be represented as 

Tb’, q’; p ,  q )  = J d4x’ d4x exp( -ip’-x’)9-q,4(xf, x) exp(ip e x ) .  (2.1) 

Here Tqv4(x’, x) is defined as 5 d4y’ d4y exp( -iq‘*y’)Y(x’, y ’ ;  x, y) exp(iq y) ,  with 
Y(x’, y‘; x, y )  representing the collection of Feynman matrix elements in configuration 
space appropriate to the two-particle collision process. The relation 

(2.2) 

with P = p + q and P’ = p’ + q’, expresses conservation of total momentum. The invari- 
ant T amplitude is assumed to have a non-singular off-mass-shell extension. The 
physical amplitude for the isolated two-particle system is obtained by imposing the 
on-shell conditions p 2  + m2 = p‘* + m2 = 0. (The conditions q2 + M 2  = q“ + M 2  = 0 are 
assumed to hold in all that follows.) 

Suppose now that the scattering takes place in the presence of an external plane- 
wave field of arbitrary spectral composition and pdarisation properties. The vector 
potential A,  is taken to be a function of U = -n * x, with n 2  = 0 and no  > 0. One may 
think of such a field as representing a superposition of plane waves exp(ik e x )  with 
k = wn and w arbitrary. The unique propagation direction is n, and w represents the 
angular frequency in a reference frame where no = 1. (We use natural units, with 
h = c = 1). More generally, A,(u)  is an arbitrary function of U subject to the condition 

TW, 4’; p ,  q )  = ( 2 . r r ) 4 8 4 ( ~ ‘ - ~ ) ~ w ,  q ’ ;  p ,  4), 

8,A” = -d(n .A)/dU = 0. 
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This is satisfied by requiring that n * A  = 0. One still has the freedom of introducing a 
gauge transformation 

A,(u) + A,(u) +a,A (U) =A, (U) - np dA/du, 

which preserves the condition n * A  = 0. The potential is assumed here to vanish for 
IuI > UO. Such a cut-off is unrealistically sharp, but is adopted to simplify the analysis. 

With the field present, the plane wave describing the asymptotic motion of the 
charged particle is replaced by 4;’ (or 9::’) for the initial (or final) state. These 
functions satisfy 

(2.3) [( - i a - eA)’ + m’]&’(x ; A) = 0 

and can be expressed as 

&’(x;A)=exp(ip-x)exp I,,(n)dii) +exp(ip*x), U < -240, ( 2 . 4 ~ )  

&’(x; A)=exp(ip’*x) exp(i~uuoIp,(zZ) dli) +exp(ip’*x), U > uo, 

where 

Ip(u)  = (2n *p)-l[2ep *A(u)-e2A2(u)]. 

(2.46) 

(2.5) 
These Volkov plane waves should in fact be replaced by Volkov wave packets as 
discussed by Neville and Rohrlich (1971). Such a replacement will be understood in the 
following, rather than explicitly written out. The field-modified version of equation 
(2.1) is 

Tb’, q‘ ;  p, q ;  A )  = I d4x’ d4x $$’* (x ’ ;  A)Y,,,(x’, x ;  A)$b+’(x; A). 
(2.6) 

The construction of the modified kernel T4,,(x’, x ;  A) is discussed below. 

3. Impact approximation 

We now introduce an approximation for the kernel T,,,(x’, x ; A) appearing in equation 
(2.6) based on the assumption that the characteristic time over which the field changes 
by an appreciable fraction of itself is large compared with the collision time. More 
precisely, let uc be a measure of the collision time in the rest frame of the charged 
particle. We assume that 

--J(z) e’ CM ’ 

for all IuJ < uo. For the particular case of a monochromatic wave of frequency w this 
condition is roughly equivalent to (e’,”’) [A(u)]’(wu,)~<< 1, and is satisfied for 
(e2/m2)A2 not much greater than unity. (In fact, inserting values of e and m appro- 
priate to the electron, one finds that (e2/m2)A2 barely reaches the order of magnitude 
unity for the strongest laser fields presently available.) In the crudest statement of the 
impact approximation for a non-resonant collision in a field satisfying the condition 
(3.1) one assumes that the collision takes place too rapidly for the field to have an 
appreciable effect on the intermediate states of the scattering process, so that 
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Yqfq(x‘, x ;  A )  = 9 q 1 q ( x ’ ,  x ) .  Since the field has ample time to act in initial and final 
states, the correct Volkov solutions must be used in equation (2.6). In the form just 
stated, the approximation fails to satisfy gauge invariance. Earlier work by Low (1958) 
and Brown and Goble (1968) suggests that an improved approximation can be obtained 
which restores gauge invariance and which allows one to construct the amplitude for 
scattering in the field from a knowledge of the on-shell field-free scattering amplitude. 
We will show below that the form 

Tqjq(x’, x ;  A)  =exp[ieA(x’, x ) ] . T q n q ( x f ,  x), (3.2) 
with 

A(x’, X )  = (x’ - X )  * dv A[u + V ( U ’  - U)], (3.3) 

used in conjunction with equation (2.6), provides us with such an improved approxima- 
tion. We will also verify that for the special case of a monochromatic wave the 
Brown-Goble low-frequency approximation is reproduced. At the same time we will 
confirm the validity of the Brown-Goble procedure based on an approximation rather 
similar to equation (3.2) but involving only the on-shell amplitude. That is, we 
introduce the field-free amplitude off the mass shell, as in equation (3.2), and specify 
conditions under which the off -shell components may be neglected. 

To see how the approximate form (3.2) arises we examine the structure of the 
particle-field propagator G(x, x’; A)  which satisfies 

([-ia-eA(x)]’+m2}G(x, x‘ ;A)= S ( x  -x’). (3.4) 

It has been shown (Schwinger 1951, Brown and Kibble 1964) that the propagator may 
be represented as 

G(x’, x ;  A)  = exp[ieA(x’, x)]Ac[x’-x; m2+A2(u’, U)]. (3.5) 

A&’ - x ; m 2 )  is the free propagator for a spin-zero particle of mass m. The coordinate- 
dependent mass shift is given by 

&’(U’, U )  = e2 lo’ dv’ A[u + ~ ’ ( u ’ - u ) l ( A [ u  + q r C u ’ - ~ ) l - ~ o  dvA[u + ~ ( U ’ - - U ) ] ) *  
1 

(3.6) 
In the form (3.5) G(x’, x ;  A)  evidently satisfies the correct gauge transformation 
property (which follows directly from equation (3.4)) since 4’ is gauge invariant and 
A(x’ ,  x)+A(x’, x)-A(u)+A(u‘) for A”  + A ”  -n” dA(u)/du. For our present 
purposes the essential property of A.’, evident from its definition (3.6), is that it vanishes 
for U’ + U. To see how rapidly A.’ vanishes in this limit, one expands A,  in equation 
(3.6) about some fixed point in the range of integration. Ignoring second-derivative 
terms, one readily finds 

(3.7) 

Physically, this behaviour reflects the fact that, over a time span short compared with a 
characteristic period of the field, the mass shift due to the interaction with the field 
cannot build up appreciably. Now we are studying the propagation during the collision. 
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Setting (U’- u ) ~ -  uf we have 

-=--(-) I e’ d~ 2 

m2-12m2 du u c ,  

a quantity which we have assumed to be very small compared with unity. With JCc2 
neglected we have the approximation 

G(x‘, x;  A)=exp[ieA(x’, x)]Ac(x’-x; m2) (3.8) 

for the propagator. To determine the effect of this approximation on the scattering 
amplitude we may visualise 3(x‘, y’; x, y )  as a collection of Feynman diagrams in 
configuration space. We assume that the two spinless bosons experience local inter- 
actions, with the propagation of the charged particle from one vertex to the next 
described by the form (3.8). As observed by Schwinger (1951), A(x’,x) can be 
redefined in such a way that it is represented by a path-independent integral, reducing 
to (3.3) when the path is taken to be a straight line. (See equations (3.17) and (4.28) of 
Schwinger’s paper.) This path-independence property implies that as the entering 
charged-particle line passes continuously through the diagram it picks up the overall 
phase eA(x’, x), the same phase for each diagram, and that closed charged-particle 
loops have no additional phase factors associated with them. One then arrives at 
equation (3.2). 

3(p’, q’; p ,  q ;  A)  =I d4x’ d4x $$“*(x’; A) exp[ieA(x’, X) ]T~ ,~ (X’ ,  x)$J;”(x; A). (3.9) 

The gauge invariance of this approximation is easily verified using the fact, evident from 
the definition (2.4a), that 

Insertion of the approximation (3.2) into equation (2.6) gives 

$F’(x ; A) + exp(i[A (U) - A (UO)]}$:) (x ; A)  

for A + A  -n(dh/du). (Actually a constant phase is introduced in equation (3.9) by 
such a gauge transformation. This can be avoided by redefining the phase of 4b-’(x; A), 
making this function identical to $F’(x; A); it will be understood in the following that 
this has been done.) 

As a convenient procedure for introducing the momentum-space representation of 
the field-free 3 amplitude appearing in equation (3.9), we ma’ke use of the identity 

&’*(x’; A) exp[ieA(x’, x)]$F’(x; A) 
m dw’ 

= J 2 Jm dii’ Jm FJ dii exp(i[wii-Sp(ii)+Qp(o, ii‘, ii).x 
-m -m --oo IT -m 

-w’ii’+SPe(ii’)- QP~(w‘, a’, ii).~’]}, (3.10) 

with 

and 

(3.11) 

Q,(w,zi’ ,~)=p+wn-eJ dqA[ii+q(ii’-ii)]. (3.12) 
0 
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To verify this identity one simply performs the integrals over w and o’ using the relation 

dw I, - 277 exp[iw(ii + IZ ax)] = s(a + n .  x ) .  (3.13) 

Recalling equations (2.1) and (2.2) we see that equation (3.9) may be rewritten in the 
form 

W’, 4‘; P ,  4; A )  

xexp{i[wC -S,(C)-w’ii‘+S,~(ii’)]}T[Q,~(w’, C‘, a), 4’; Qp(w, a’, E), 41. 
(3.14) 

At this point we make use of the so-called light-like coordinates; they are defined in 
terms of the basis vectors n, the real orthonormal polarisation vectors e1 and eZ,  each 
orthogonal to n, and a fourth four-vector n* which satisfies n** = 0, n**n = -1 and 
n* ei = 0. An arbitrary vector V may be expanded as V = VIEI + V ~ E Z  + VUG + VUn. 
The components in this basis are then V, = ei V, V, = -n V and Vu = -n* * V. In 
writing U for xu we follow the notation of Neville and Rohrlich (1971) and Mitter 
(1975). Writing the 8 function in equation (3.14) as 

S(u;-P,)s(P;-P2)s(p: - P , ) S ( o ’ - w  +P: -Pu) 

we may perform the integration over o’ and set 

w ’ = U - (PL -P,) (3.15) 

elsewhere in the integrand. Note that T in equation (3.14) is off the mass shell since the 
scalar variables 

[=a(@, a’, C)+m2, (3 .16~)  

6’ = &(U’, a‘, a )  + m 2  (3.16b) 

are non-vanishing in general. 

4. Further analysis of the impact approximation amplitude 

The vector potential, restricted only by the condition n * A  = 0, may be expanded as 
A(u) = eIAI(u)+ e2Az(u) +nA,(u). We wish to take into account the slowly varying 
nature of the field, as characterised by the condition (3.1), to simplify the expression 
(3.14). Now the inequality (3.1) places a restriction on A1 and Az, but not on the 
component A,. Since the expression (3.14) is gauge invariant we may, in the following, 
set A, = 0 (radiation gauge); the gauge invariance of the final version will serve as a 
consistency check on the subsequent approximation procedure. 

In accordance with the above remarks we ignore the variation of A between U and a’ 
in equation (3.12) and write 

QP(q a’, a)=Q, (w ,  ii)=p+wn-eA(C), ( 4 . 1 ~ )  

Qp8(w’, C’, U)= Qp,(w‘, C’)=p’+o’n -eA(C‘). (4.lb) 
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The scalar variables defined in equations (3.16) become, in this approximation, 

( 4 . 2 ~ )  

(4.2b) 

with U‘ given by equation (3.15). 
To make further progress we introduce more specific assumptions concerning the 

sizes of the relevant parameters in the problem. Let us consider two different regimes, 
one in which the function $(U) is of order unity and the other in which it is large 
compared with unity. These have been referred to as the intermediate- and strong- 
coupling regimes, respectively, in an earlier analysis of electron-atom scattering in a 
monochromatic laser field (Rosenberg 1981). Now for S, - 1, the case we consider first, 
its derivative dS,/du = I p ( u )  (which is a measure of the particle-field interaction 
energy) may, as a consequence of the assumed slow variation of the potential A ( u ) ,  be 
treated as a first-order quantity. Accordingly, we expect that the deviation off the mass 
shell is effectively small and can be accounted for by a Taylor series expansion of the T 
amplitude about zero values of the off-shell variables ( and 6’ given in equation (4.2). 
Now w in equation ( 4 . 2 ~ ~ )  is an integration variable, ranging between infinite limits, but 
it may nevertheless be treated as a first-order quantity since the most significant region 
of integration corresponds to w -Ip.  This statement is based on the observation that 
insertion of the factor w -I,( i i)  into the integrand in equation (3.14) gives rise to an 
integral which vanishes to first order, indicating that w -I ,  is effectively of second order. 
To check this we perform an integration by parts, with 

w exp(iwii)exp[-iS,(ii)] + [dS,(ii)/dii]exp(iwC) exp[-iS,(ii)] 

in the integrand. Surface terms introduce exponential factors which vary infinitely 
rapidly as subsequent integrations are performed and are neglected. We have also 
neglected a term involving dT/dii since A@) has only a first-order effect on the 
arguments of T, and differentiation generates only second-order corrections. (We 
assume here that T is a smooth function; the discussion would require modifications if 
scattering resonances were present.) The argument just given shows that w -Ip is of 
second order ‘on the average’; at the same time it shows that the first-order correction 
term in a series expansion of T about ( = 0 vanishes. Second-order corrections will be 
ignored. 

At this stage the T amplitude in equation (3.14) may be expressed as a function of 
the scalar variables Y = -Qp(w, i i ) . 4  and T = - (4’-q)2 in addition to the off-shell 
variables ( and (‘ introduced previously. We have shown that ( may be set equal to zero 
to first order. Precisely the same reasoning which led us to replace w by &(a) in the ( 
variable leads us to make the same replacement in the two other scalar variables in 
which w appears. Thus Y becomes -p(z i ) -q ,  where 

p (6) = p - eA (a) + nIp (ii ) (4.3) 

is the classically determined momentum for the charged particle in the field (Brown and 
Kibble 1964). Similarly, 6’ becomes, according to equations (4.2b) and (3.15), 

(’= 2n *p’[I,(fi)-I, ,( i i’)-(P: -Pu)]. (4.4) 
Since w now appears only in the factor exp[iw(ii - E’)], the integration over w can be 
performed thereby introducing a S function of (17 -a’). The integration over U” is then 
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trivial and we are left with 

Here T is a function of the scalar variables 

{v, 7 , 5 , 5 ‘ } = { - P ( 4 . q ,  -(4’-4>2, 0,  5’1, 
with 5’ given by equation (4.4) and with 2‘ = ii. In the final step of the argument we 
expand T about 6’ = 0. The first-order correction term, involving t’(aT/d(‘), vanishes. 
This follows from an integration by parts with 

(PL -Pu) exp{i[PL -Pu)f i  -S,  +Sp,]}-* (Ip -Ip!)  exp{i[(PL -PU)ii -S ,  +Sp,]}.  

Since we ignore second-order corrections, we may replace 5‘ in equation (4.5) by zero. 
We then have the approximation 

3@’, 4’; P ,  4 ;  A )  
(2d3s (p ;  - P ~ ) S ( P ;  -P,)s(P: -PJ 

x j-, dfi exp(i[(PL -Pu)ii -s,W +spWI1T[p’(ii>, 4’ ;  PG), 41, 
03 

(4.6) 

with T now on the mass shell since p 2 ( B )  + m2 = p ” ( z l )  + m 2  = 0. Note that P, is not 
conserved since the system is not invariant with respect to translations of the conjugate 
variable U = -n * x .  We have been working in the radiation gauge, but a transformation 
of the form A, (U) + A, (U) - n, (dhldu) clearly leaves equation (4.6) invariant so that 
this gauge restriction may now be dropped. 

In the foregoing discussion we have assumed that $ ( E )  - 1. We now consider the 
strong-coupling regime characterised by the condition S,(ii) >> 1 for liil < uo. Since 
&,(a) vanishes for 1171 > uo, we treat the two regions of integration separately. In the 
region IBl> uo the previous argument, based as it was on the weakness of the interaction 
strength, can be taken over unchanged. For liil< uo, however, the series expansion 
technique used earlier is inapplicable. Instead we note that with S,(zi)>>l the 
exponential will be varying rapidly as a function of B, and the dominant contribution to 
the integral will come from the region where the phase is stationary. The stationary 
phase condition is w = & ( E ) ,  which is just the condition arrived at, by different 
reasoning, in the earlier treatment of the intermediate-coupling case. The previous 
argument can then be applied, mutatis mutandis, with the result that equation (4.6) is 
established for both the intermediate- and strong-coupling regimes. 

5. Some special cases 

(i) To make contact with previous work let us apply the approximation (4.6) to the 
case of a monochromatic plane wave of frequency w. In addition to the basic 
low-frequency condition 1 we assume that wuo >> 1. According to this latter 
condition the field goes through many oscillations during the transit of the laser pulse 
through the scattering region; the cut-off then plays no essential role and for simplicity it 
will be removed. (To prevent the appearance of an infinite phase factor in equation 
(3.11) we redefine the integral by dropping the contribution from the lower limit and 
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then letting u0+ 00.) The vector potential is taken to be 

A,@) =d, exp(i4)+& exp(-i4), (5.1) 
where d, is a constant amplitude and we have expressed A as a function of the phase 
4 = -mu rather than of U. In terms of the propagation vector k = wn we have 4 = k x.  
In place of equation (3.11) we now write 

(5.2a) 

with 

Let us now introduce the Fourier expansion 

with inverse 

and with 

~ ( 4 )  = P - eA(4) + (2n P)-*I%P A(+) - e’~’(4)I. (5 .5 )  

The integration over ii in equation (4.6) may now be performed using the represen- 
tation (5.3) with 4 +-WE on the right-hand side. The result is 

m 

T@’, 4’;p, 4 ; A ) s  C (2m)4S4(p’+4’-@-4-rk)T(‘), (5.6) 
r=-m 

where 

(5.7) 

T‘” may be interpreted as the amplitude for scattering with the absorption of r photons 
if r is positive, or with the stimulated emission of -r photons if r is negative; equation 
(5.4) represents a low-frequency approximation for this amplitude. This formula does 
not appear explicitly in the original treatment of this problem by Brown and Goble, who 
were primarily interested in deriving an expression for the total cross section in order to 
establish a classical correspondence. However, as shown subsequently (Rosenberg 
1980), equation (5.4) can easily be derived from the underlying soft-photon approxi- 
mation introduced by those authors. We note that a non-relativistic analogue of 
equation (5.4) has been obtained (Rosenberg 1981) for electron-atom scattering in a 
laser field. 

(ii) Since we have placed a lower limit w >>MO’ on the frequency in the above 
derivation, the result cannot be used to study the limiting case of scattering in a constant 
crossed field. Indeed, if the electric field is to be non-vanishing in the limit w -* 0, the 
amplitude Se, in equation (5.1) will be unbounded in that limit. There is no difficulty, 
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however, in using the general result (4.6) to treat this case. The appropriate choice of 
vector potential in the radiation gauge is, for ]U I < u0, A = -Eu, withE a constant vector 
orthogonal to the unit vector n. The electric and magnetic field vectors are E and n x E, 
respectively. The presence of the cut-off prevents the vector potential from growing 
without bound. 

(iii) In the strong-coupling regime the dominant contribution to the integral comes 
from a region near the point of stationary phase, determined by the condition 

Ip f ( z i ) - Ip ( f i )  = -(P: --PU). (5.8) 

Here we assume that equation (5.8) can in fact be satisfied for some zi, call it us,, in the 
region between -u0 and uo. Equation (4.6) may be simplified by evaluating the 
momenta p(Ls) and p’(Ls) at Ls = U,, and removing the T amplitude from underneath the 
integral sign. The value of p(uS,) can be determined rather easily in the special case of a 
linearly polarised field, with A. = 0 and A(u) = eu(u) ;  we also go to the non-relativistic 
limit where Ip1 and lp’l are small compared with m. We then have 

P ~ ~ , , ~ = P - ~ ~ ~ ~ ~ , ~ + ~ ~ ~ ~ ~ ~ , ~ ~ P - ~ ~ ~ ~ ~ , ~ ,  (5.9) 

ignoring a correction term of order lpl/m. In this same approximation we have 

I~.(U,,) - I ~ ( U , , )  zz m - l e h ‘  - p )  eu(us,). (5.10) 

The stationary phase condition then gives 

(5.11) 

This result allows us to determine p(u,,) = p  - eeu (U,,) and p’(u,,) = p ’ -  eeu(u,,), with 
PO(U,,)  g m, pA(u,,) = m. Accordingly, the approximation (4.6) becomes 

Q’, 4 ’ ;  P, 4 ;  A )  

= ( 2 r r ) 3 s ( ~ i  -PW;-P~)S(P: - P , ) T [ ~ ’ ( ~ ~ , ) ,  4’; P(us,), 41 

(5.12) 

Further specialisation to the case of a monochromatic wave leads to the version of the 
low-frequency approximation derived by Kroll and Watson (1973) in a potential 
scattering model. 

6. Inclusion of spin effects 

The methods developed above are now applied to the problem of the scattering of a 
particle of charge e, spin f, and anomalous magnetic moment pA from a neutral scalar 
particle in the presence of the field. The only new feature which needs emphasis is the 
effect of spin on the asymptotic states. In the absence of the external field these states 
satisfy the Dirac equation 

(~.a+m)exp(ip.x)rLL(p)=O, ( 6 . 1 ~ )  

(i7.p + m)rL(p) = 0, p2+ m 2  = 0. (6.lb) 
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In place of equation (2.2) we now have 

3w, 4’; P, 4) = (2.rr)4s(p’-p)~(P’)T(P’, 4’; P, 4)+(P) .  (6.2) 
As we have seen, the off -shell extension of the T matrix is relevant in the external-field 
problem; it turns out to be useful to introduce the projection operators 

*iY ‘ P  + w = (-P2)1/2, R*(P)= 2w , 

with R +  + R- = 1 .  We may write, quite generally, 

T = R -( p’)  T--R- ( P ) + R - (P ’ )  T-+R+ ( P ) + R+( P ‘) T+-R - ( P )  + R + ( P ‘) T++R+ ( P )  - 
(6.4) 

Evidently, it is only the component T-- which contributes to the amplitude (6.2) for 
p2 + m2 = j f 2 +  m2 = 0. 

In the presence of the field the asymptotic states are chosen as solutions of 

[ y ’ ( a - i e A ) + m - ~ p A ~ ” ~ ” ” I $ p ( ~ ; A ) = O ,  (6.5) 
where F”” is the field tensor and U,, = i(y,y, - yYye)/2.  Here we ignore the distinction 
between +:’ and +;-’, to simplify notations. The solution to equation (6.5) has the 
form 

$ p ( ~ ; A )  = exp(ip-x) ex~[-iS~(u>lx~(u),  (6.6) 
with 

(6.7) 

The function Jp can be constructed using the method described by Becker and Mitter 
(1974) and by Becker (1975). Explicit solutions are available for the case of linear 
polarisation, and for circular polarisation in the limit of a monochromatic wave train of 
infinite extent. More generally, one must solve, in some approximation, a set of coupled 
first-order differential equations (see equation (22) in the paper by Becker and Mitter) 
to obtain this function. In the present context the important property of the exact 
solution to be noted is the relation 

[iY*P(u)+mlxp(u) =o, (6.8) 
where p ( u )  is the ‘classical’ momentum defined in equation (4.3). As will be seen, this 
relation guarantees that only the physical component T-- of the T matrix appears in the 
final version of the low-frequency approximation. Equation (6.8) may be verified 
directly, for example, by making use of the functional form of xp as expressed in 
equation (3.4) of the paper by Becker (1975). 

For FA = 0 we have Jp = 1 and equation (6.6) reduces to the usual Volkov solution 
for a Dirac particle. In many cases of interest an approximation for Jp correct to first 
order in PA will be adequate. The coupled differential equations defining Jp are easily 
solved in this approximation. With the integration constants chosen to guarantee that 
Jp + 1 for pA + 0 and that Jp contains no explicit dependence on the cut-off value ug 

(and hence is appropriate to the case of an infinitely long wave train), we find 
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Before continuing any further let us review the basis for the approximation 
procedure to be used: 

(i) The dominant effect of the field lies in the appearance of the phase factor S, in the 
asymptotic states. This is most easily seen by specialising to the case of a field of well 
defined frequency w. The integration in equation (3.11) introduces a factor U - * ,  a 
manifestation of the well known infrared near-singularity. 

(ii) We also account for contributions of the type 
1 

L‘O’ = 1 d7 A[u + v(u’- U)], (6.10) 
Jo 

which appears, for example, in equation (3.3). For /U’ -  U /  s U,, a restriction appro- 
priate to a discussion of the intermediate-state propagator, the integrand in equation 
(6.10) is very nearly constant over the domain of integration, so that no near-singularity 
can develop; the integral would be of order w o  for a monochromatic field. 

(iii) We neglect terms of the type 
1 

L”’ = A(u) - I dvA[u + v ( ~ ’ -  U)] (6.11) 

for I U ‘ - U ~ = S U ~ .  Such a term appears, for example, in equation (3.6); it is of order 
dA/du, or, in the monochromatic case, of order ol. 

In order to arrive at an approximation analogous to that derived above for the 
spin-zero case, we must examine the spinor propagator in the presence of the field. The 
representation of this propagator derived by Becker (see his equation (5.5)) is con- 
venient for this purpose. The propagator, which satisfies 

0 

[y.(a-ieA)+m -$~A(~ ,J”” ]G(X ,  x ’ ;  A)=S(x - x ’ ) ,  (6.12) 

has a fairly complicated structure. However, in the approximation that terms of the 
same order as that shown in equation (6.11) (i.e. terms of order dA/du) are neglected, 
we find that 

(6.13) 

where S, is the free spin-$ propagator. We may then follow the argument given 
previously, which led to the approximation (4.6), to obtain a similar form, in which the T 
amplitude in equation (4.6) is replaced by ,?,,(zZ)T--b‘(fi), 4’;p(fi), q]xp(f i ) .  Let us 
emphasise that by virtue of equation (6.8) and its adjoint only the physical component 
T-- in the expansion (6.4) enters into our final result. 

As a check on the formalism we may examine the weak-field limit and compare the 
approximate transition amplitude with that obtained for single-photon spontaneous 
bremsstrahlung by Low (1958). With terms of order A* neglected, equation (6.9) 
becomes, after a slight rearrangement, 

G(x’, x ;  A)  = exp[ieA(x’, x ) ] S , ( x ‘ - x ;  m), 

F A  

2n - p  
J , = l - - [ ( - i y * p + m ) y * n y * A - y .  ny-A(-iy*p-m)]. (6.14) 

Equation (6.7), in this linear approximation, is then 

(6.15) e 
2n * p  

(iysp - m ) y * n y * A  +---y *ny-A)$(p). 

Assuming a monochromatic field of frequency w we may determine the approximate 
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amplitude for scattering with the emission of a single laser photon by setting r = -1 in 
the spinor analogue of equation (5.4). This amplitude is readily determined to be 
&EM”, where M” appears as equation (3.16) in Low’s paper. 
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